The shifting of society to an agrarian system, then to an industrial society with populations mainly located in urban areas, has reduced the availability of agricultural labor and caused an increase in the mechanization of agricultural machinery.
Agricultural mechanization started with the steam-powered reapers and traction engine, then advanced with the invention of mobile hydraulics and electronic control systems that are used in modern machinery today. These systems can be combined with various sensor systems, including GPS, to help guide and automate the vehicles to improve their efficiency, reduce crop damage, and improve crop yields through better cultural practices.
Mechanised agriculture is the process of using agricultural machinery to mechanise the work of agriculture, greatly increasing farm worker productivity. In modern times, powered machinery has replaced many farm jobs formerly carried out by manual labour or by working animals such as oxen, horses and mules.
The entire history of agriculture contains many examples of the use of tools, such as the hoe and the plough. The ongoing integration of machines since the Industrial Revolution however has allowed farming to become much less labour-intensive.
Current mechanised agriculture includes the use of tractors, trucks, combine harvesters, countless types of farm implements, aeroplanes and helicopters (for aerial application), and other vehicles. Precision agriculture even uses computers in conjunction with satellite imagery and satellite navigation (GPS guidance) to increase yields.
Mechanisation was one of the large factors responsible for urbanisation and industrial economies. Besides improving production efficiency, mechanisation encourages large scale production and sometimes can improve the quality of farm produce. On the other hand, it can displace unskilled farm labour and can cause environmental degradation (such as pollution, deforestation, and soil erosion), especially if it is applied shortsightedly rather than holistically.
In order to achieve sustainable food security, with regards to the identified factors the necessary recommendations and Governmental-support policies in the agricultural sector were presented: 1. reforming the country’s planting pattern according to the climatic conditions considering the relative advantage of agricultural production, 2. modernizing the mechanization fleet; 3. investing in research and development of agriculture and modern knowledge; the production and import of agricultural machinery and modern technologies according to their suitability with the country's conditions and future needs of the country; strengthening of the supply chain and maintenance services.
Increasing food production along with maintaining natural resources is not an easy task. The second green revolution, which in the second half of the last century was able to produce more than twice the amount of food, is currently not in a good position. The growth rate of major cereal yields (wheat, rice and corn) is declining. Increasing food production requires resource-friendly methods, and this will require the development of new mechanization technology. There are many technology options, but there is relatively scarce evidence of supporting decision making in the form of technology. While one of the major constraints on developing and modernizing production in developing countries is the low level of engineering technology in agriculture.
For example, the FAO report on the state of mechanization in the African countries indicates that most African countries have not taken serious plans for sustainable mechanization, and efforts have failed to reach mechanization issues due to the micro, rather than macro, approaches. Studies show that crop production is more beneficial in areas where agricultural mechanization is provided.